bbabanner.jpg

Effect of reaction conditions on gamma radiation-induced graft polymerization of α-methyl styrene onto polyethersulfone films: a kinetic study

In this work, gamma irradiation from a cobalt 60Co source was used to graft Copolymerize α-methyl styrene (AMS) onto Polyethersulfone (PES) films. Grafting reaction was performed at ambient temperature by simultaneous method applying different dose rates for a total absorbed dose of 30 kGy. The effects of reaction conditions including, dose rate, monomer concentration and absorbed dose on the grafting yield (DOG) were studied. Results showed that the grafting conditions influence considerably DOG. In addition, the depth understanding of the graft copolymerization reaction kinetics under

Artificial Intelligence
Circuit Theory and Applications
Agriculture and Crops

An Efficient DMO Task Scheduling Technique for Wearable Biomedical Devices

The popularity of wearable devices has grown as they improve the quality of life in many applications. In particular, for medical devices, energy harvesters are the dominating source of energy for wearable devices. However, their power budget is limited. Thus, power-saving techniques are essential components in the whole technology stack of those devices. That is, choosing the optimal schedule for different tasks running on the wearable device can help to reduce energy consumption. This paper presents a sensor task scheduling technique for optimizing energy consumption for energy harvesting

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications
Software and Communications

Preparation and Characterization of nZVI, Bimetallic Fe 0-Cu, and Fava Bean Activated Carbon-Supported Bimetallic AC-F e 0-Cu for Anionic Methyl Orange Dye Removal

Nano zero-valent iron (nZVI), bimetallic Nano zero-valent iron-copper (Fe 0- Cu), and fava bean activated carbon-supported with bimetallic Nano zero-valent iron-copper (AC-F e 0-Cu) were prepared and characterized by DLS, FT-IR, XRD, and SEM. The influence of the synthesized adsorbents on the adsorption and removal of soluble anionic methyl orange (M.O) dye was investigated using UV-V spectroscopy. The influence of numerous operational parameters was studied at varied pH (3–9), time intervals (15–180 min), and dye concentrations (25–1000 ppm) to establish the best removal conditions. The
Artificial Intelligence
Energy and Water
Circuit Theory and Applications

Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modelling

Water contamination with colours and heavy metals from textile effluents has harmed the ecology and food chain, with mutagenic and carcinogenic effects on human health. As a result, removing these harmful chemicals is critical for the environment and human health. Various standard physicochemical and biological treatment technologies are used; however, there are still some difficulties. Adsorption is described as a highly successful technology for removing contaminants from textile-effluents wastewater compared to other methods. Several adsorbent materials, including nanomaterials, natural

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications

A power-aware task scheduler for energy harvesting-based wearable biomedical systems using snake optimizer

There is an increasing interest in energy harvesting for wearable biomedical devices. This requires power conservation and management to ensure long-term and steady operation. Hence, task scheduling algorithms will be used throughout this work to provide a reliable solution to minimize energy consumption while considering the system operation constraints. This study proposes a novel power-aware task scheduler to manage system operations. For example, we used the scheduler to handle system operations, including heart rate and temperature sensors. Two optimization techniques have been used to

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications
Software and Communications
Innovation, Entrepreneurship and Competitiveness

Modified Blowfish Algorithm Based on Improved Lorenz Attractor

Image security becomes important topic because of increasing image usage in communication besides assures information security which is unseen in these images such as military and medical images. Blowfish is a superb symmetric cryptography that ensures a high degree of resistance to attacks. The proposed system modifies Blowfish algorithm by substituting the function in blowfish round with light weight function to save memory and resources of the platforms and Using 3-D chaotic system (Improved Lorenz) that work as a key timetable for creating Blowfish sub keys in order to increasing

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications
Mechanical Design

Real-time facial emotion recognition model based on kernel autoencoder and convolutional neural network for autism children

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is characterized by abnormalities in the brain, leading to difficulties in social interaction and communication, as well as learning and attention. Early diagnosis of ASD is challenging as it mainly relies on detecting abnormalities in brain function, which may not be evident in the early stages of the disorder. Facial expression analysis has shown promise as an alternative and efficient solution for early diagnosis of ASD, as children with ASD often exhibit distinctive patterns that differentiate them from typically

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions

The Internet of Things (IoT) is a global network of interconnected computing, sensing, and networking devices that can exchange data and information via various network protocols. It can connect numerous smart devices thanks to recent advances in wired, wireless, and hybrid technologies. Lightweight IoT protocols can compensate for IoT devices with restricted hardware characteristics in terms of storage, Central Processing Unit (CPU), energy, etc. Hence, it is critical to identify the optimal communication protocol for system architects. This necessitates an evaluation of next-generation

Artificial Intelligence
Energy and Water
Circuit Theory and Applications
Software and Communications

Implementation of Multi-Step Bias-Flip Rectifier for Piezoelectric Energy Harvesting

The full-wave rectifier is an essential step for extracting energy from a piezoelectric source. Yet, the inherent capacitance of the piezoelement significantly is considered a limitation of the efficiency of extraction. To address this issue, the bias-flip rectifier can be used. However, this rectifier needs large inductor and precise tuning. The large inductor increases the overall volume of the system which is inefficient. This paper address the problems with the traditional bias-flip rectifier by introducing an enhanced multi-step bias-flip rectifier to achieve a high voltage-flip

Energy and Water
Circuit Theory and Applications

Biologically Inspired Optimization Algorithms for Fractional-Order Bioimpedance Models Parameters Extraction

This chapter introduces optimization algorithms for parameter extractions of three fractional-order circuits that model bioimpedance. The Cole-impedance model is investigated; it is considered one of the most commonly used models providing the best fit with the measured data. Two new models are introduced: the fractional Hayden model and the fractional-order double-shell model. Both models are the generalization of their integer-order counterpart. These fractional-order models provide an improved description of observed bioimpedance behavior. New metaheuristic optimization algorithms for

Artificial Intelligence
Circuit Theory and Applications