banner

Tikhonov regularization for the deconvolution of capacitance from the voltage–charge response of electrochemical capacitors

The capacitance of capacitive energy storage devices cannot be directly measured, but can be estimated from the applied input and measured output signals expressed in the time or frequency domains. Here the time-domain voltage–charge relationship of non-ideal electrochemical capacitors is treated as an ill-conditioned convolution integral equation where the unknown capacitance kernel function is to be found. This comes from assuming a priori that in the frequency domain the charge is equal to the product of capacitance by voltage, which is in line with the definition of electrical impedance

Artificial Intelligence
Energy and Water
Circuit Theory and Applications
Software and Communications
Mechanical Design

Synthesis of resonance-based common-gate fully differential band-pass filters

We propose a class of fully differential filters based on a common-gate differential amplifier cell in three different topologies. Our focus is on the synthesis of second-order band-pass filters and we found 53 possible circuits. All filters are resonance-based and have electronically tunable gain. Post layout simulations in 65-nm CMOS technology are provided to validate the proper function of these filters. © 2022 Elsevier B.V.

Artificial Intelligence
Circuit Theory and Applications
Mechanical Design

Field Programmable Analog Array Based Non-Integer Filter Designs

The approximation of the frequency behavior of fractional-order, power-law, and double-order filters can be performed by the same rational integer-order transfer function. This can be achieved through the utilization of a curve fitting based approximation. Moreover, their implementation can be performed by the same core, by only changing the corresponding time constants and scaling factors. The aforementioned findings are experimentally verified using a Field Programmable Analog Array device. © 2023 by the authors.

Circuit Theory and Applications
Mechanical Design

Robust adaptive supervisory fractional order controller for optimal energy management in wind turbine with battery storage

To address the challenges of poor grid stability, intermittency of wind speed, lack of decision-making, and low economic benefits, many countries have set strict grid codes that wind power generators must accomplish. One of the major factors that can increase the efficiency of wind turbines (WTs) is the simultaneous control of the different parts in several operating area. A high performance controller can significantly increase the amount and quality of energy that can be captured from wind. The main problem associated with control design in wind generator is the presence of asymmetric in the

Artificial Intelligence
Energy and Water
Circuit Theory and Applications
Software and Communications
Mechanical Design
Innovation, Entrepreneurship and Competitiveness

Parallel random bitstreams from a single source of entropy based on nonthermal electrochemical microplasma

This study presents the simultaneous generation of two uncorrelated and continuous high-quality random bitstreams originating from a single physical system based on confined, nonthermal electrochemical microplasma operating under atmospheric conditions. The randomness is intrinsically inherited from the time-resolved electrical current and optical emission intensities of the microplasma system, which were collected using wide bandwidth current probe and photodetection device. The parallel bitstreams pass unambiguously all 15 NIST SP 800-22 statistical tests without the need for any data post

Circuit Theory and Applications
Software and Communications
Agriculture and Crops
Mechanical Design

A computational flow model of oxygen transport in the retinal network

The retina's high oxygen demands and the retinal vasculature's relatively sparse nature are assumed to contribute to the retina's specific vulnerability to vascular diseases. This study has been designed to model the oxygen transport in physiologically realistic retinal networks. A computational fluid dynamics study has been conducted to investigate the effect of topological changes on the oxygen partial pressure distribution in retinal blood vessels. The Navier Stokes equations for blood flow and the mass transport equation for oxygen have been coupled and solved simultaneously for the

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications
Mechanical Design

Review and novel contributions to amplifier-based oscillator design

This paper reviews amplifier-based oscillator topologies and introduces new ones while reporting all possible circuits that can be obtained from some of them using exhaustive searching. Second-order as well as third-order RC and RLC oscillators are reported and selected circuits are designed and experimentally verified. Incorporating non-ideal and nonlinear effects into the modeling of these amplifier-based oscillators are demonstrated. © 2024

Circuit Theory and Applications
Mechanical Design

Parallel and independent true random bitstreams from optical emission spectra of atmospheric microplasma arc discharge

In this study, we propose the possibility of generating several parallel and independent random bitstreams from the time-varying optical emission spectra of an atmospheric pressure air microplasma system. This is achieved by splitting the plasma arc emission into discrete wavelengths using an optical spectrometer and then monitoring the fluctuating intensities of each wavelength as an independent time series. As a proof of concept, we considered eight wavelengths centered at 377.8, 389.1, 425.8, 591.4, 630.5, 673.0, 714.2, and 776.4 nm corresponding to atomic emissions lines from species

Circuit Theory and Applications
Software and Communications
Mechanical Design

Mathematical modeling of Upflow Anaerobic Sludge Blanket reactor in domestic wastewater treatment

This paper introduces a dynamic model to adequately describe an Upflow Anaerobic Sludge Blanket (UASB) reactor. Some available models of a UASB reactor are discussed in order to modify their drawbacks and propose a new improved model with less complexity and more reliability. The developed model is a combination of two recent models introduced in Sweden. According to this model, a UASB rector is divided hydraulically into three compartments with integration of a kinetic model. Simulations are performed to investigate the validity of the developed model which indicates a good agreement with

Circuit Theory and Applications
Mechanical Design

All-Dynamic Synchronization of Rotating Fractional-Order Chaotic Systems

This paper proposes generalized controllable strange attractors through dynamic rotation of fractional-order chaotic systems. Dynamic rotation angle enables the generation of multi-scroll and multi-wing attractors from single and double-scroll ones. The rotating systems are integrated with a generalized dynamic switched synchronization scheme. Dynamic control switches determine whether each system plays the role of master or slave. Based on dynamic scaling factors, the master can be one system or a combination of several ones with new strange attractors. The rotating fractional-order systems

Circuit Theory and Applications
Mechanical Design