bbabanner.jpg

Filter by

On the mechanism of creating pinched hysteresis loops using a commercial memristor device

In this short communication we analyze the impact of signal harmonics on the formation of the pinched hysteresis loop using a commercial memristor device. We show that by using only the fundamental frequency and the second harmonic components, extracted from the measured electrical current signal, a distortion-less pinched hysteresis loop is re-created. This loop is then used to simulate memristor

Circuit Theory and Applications

The minimax approach for a class of variable order fractional differential equation

This paper introduces an approximate solution for Liouville-Caputo variable order fractional differential equations with order 0

Circuit Theory and Applications

Design and application examples of CMOS fractional-order differentiators and integrators

Reduced complexity CMOS fractional-order differentiator and integrator building blocks are introduced in this work, based on 2 nd -order integer-order transfer function approximations. These blocks are then used for implementing fractional-order filters as well as a Leaky-Integrate-and-Fire Mihalas-Niebur neuron model. Cascading 1 st and 2 nd -order blocks to obtain 5 th -order integer-order

Circuit Theory and Applications

On a class of quadrature phase oscillators using differential pairs

A new class of quadrature phase oscillators based on cross-coupled differential pairs is introduced. This class contains eight possible circuits which produce four output voltages with phase differences of ±π or ±π/2, depending on the choice of output node, and does not require balanced differential-pair loads. Phase error analysis is provided along with experimental and simulation results using

Circuit Theory and Applications

Commercial supercapacitor parameter estimation from step voltage excitation

Supercapacitors are crucial elements in advanced industrial electronic systems particularly when supplied from renewable energy sources. Here, we derive expressions for the current, power, and stored energy in a supercapacitor excited with a step voltage signal. Although, it is not common practice to charge supercapacitors using a step voltage, these devices are sometimes used in switching-type

Energy and Water
Circuit Theory and Applications

Comprehensive comparison based on meta-heuristic algorithms for approximation of the fractional-order Laplacian s α as a weighted sum of first-order high-pass filters

To implement an approximation of the fractional order Laplacian operator s α as a weighted sum of high pass filter sections, it is essential to extract the cutoff frequencies and filter gains of each section in order to achieve the lowest error possible. Therefore, in this work, five meta-heuristic optimization algorithms are tested in this problem based on a weighted sum objective function. The

Circuit Theory and Applications

Simple MOS transistor-based realization of fractional-order capacitors

A new second-order MOS transistor based circuit block approximating the behavior of a fractional-order capacitor is proposed. The circuit is modular and therefore the order of the approximation can be increased by more stages of the same circuit in cascade or in parallel. Simulation results using a TSMC 65nm CMOS technology are provided and show less than 2o of phase error in two decades around

Circuit Theory and Applications

Single transistor fractional-order filter using a multi-walled carbon nanotube device

A low-pass fractional-order filter topology based on a single metal oxide semiconductor transistor is presented in this Letter. The filter is realized using a fractional-order capacitor fabricated using multi-walled carbon nanotubes. The electronic tuning capability of the filter’s frequency characteristics is achieved through a biasing current source. Experimental results are presented and

Circuit Theory and Applications

Third-order tunable-phase asymmetric crosscoupled oscillator

Here, the authors show that an asymmetric cross-coupled oscillator can be used to achieve independent-phase tunable outputs. In particular, a third-order cross-coupled oscillator, with non-balanced loads, is studied and expressions for its start-up condition, oscillation frequency, phase-shift between its two outputs as well as their amplitude ratio are derived. From these expressions, it is found

Circuit Theory and Applications

Single-Transistor Second-Order Allpass Filters

This paper presents two CMOS designs of a second-order voltage-mode allpass filters (APFs) for high-frequency applications. Each of the proposed filters is based only on a single transistor and four surrounding impedances. The first proposed allpass filter is an RL filter while the second proposed one is an RLC filter. A detailed analysis along with the parasitic effects is provided for each of

Circuit Theory and Applications