bbabanner.jpg

Filter by

Design and application examples of CMOS fractional-order differentiators and integrators

Reduced complexity CMOS fractional-order differentiator and integrator building blocks are introduced in this work, based on 2 nd -order integer-order transfer function approximations. These blocks are then used for implementing fractional-order filters as well as a Leaky-Integrate-and-Fire Mihalas-Niebur neuron model. Cascading 1 st and 2 nd -order blocks to obtain 5 th -order integer-order

Circuit Theory and Applications

Cad tool for two-digit ternary functions design

Ternary number, which attracts the research attention for its high capacity, has emerged in many applications, recently. Unlike binary numbers, two bit ternary number involves 93 = 729 different functions while two bit binary number involves only 42 = 16 different possible functions. In this paper, a novel automatic software description two bits ternary functions design tool is presented

Circuit Theory and Applications
Software and Communications

All-Dynamic Synchronization of Rotating Fractional-Order Chaotic Systems

This paper proposes generalized controllable strange attractors through dynamic rotation of fractional-order chaotic systems. Dynamic rotation angle enables the generation of multi-scroll and multi-wing attractors from single and double-scroll ones. The rotating systems are integrated with a generalized dynamic switched synchronization scheme. Dynamic control switches determine whether each system

Circuit Theory and Applications
Mechanical Design

FPGA realization of a speech encryption system based on a generalized modified chaotic transition map and bit permutation

This paper proposes a generalized modified chaotic transition map with three independent parameters. A hardware speech encryption scheme utilizing this map along with a bit permutation network is presented. While the transition map’s generalization introduces additional parameters, the modification enhances its chaotic properties and overcomes the finite range of the control parameter and

Circuit Theory and Applications
Software and Communications

Design of fractional-order differentiator-lowpass filters for extracting the R peaks in ECG signals

An implementation of a fractional-order differentiator-lowpass filter is presented in this work, which is constructed from Operational Transconductance Amplifiers as active cells. This offers the benefits of electronic tuning and, also, of monolithic implementation. The presented scheme has been employed for the extraction of the R peaks in electrocardiogram signals due to its efficiency for

Healthcare
Circuit Theory and Applications

Enhancing the improved Howland circuit

In this paper, an enhanced version of the improved Howland circuit is proposed. An improvement in output impedance to a maximum factor of two is obtained. The theoretical derivation is presented, including analysis from a two-port network perspective, and both simulation and experimental results using a general purpose opamp confirm the expected result. © 2019 John Wiley & Sons, Ltd.

Circuit Theory and Applications

A current-mode system to self-measure temperature on implantable optoelectronics

Background: One of the major concerns in implantable optoelectronics is the heat generated by emitters such as light emitting diodes (LEDs). Such devices typically produce more heat than light, whereas medical regulations state that the surface temperature change of medical implants must stay below + 2 °C. The LED's reverse current can be employed as a temperature-sensitive parameter to measure

Healthcare
Circuit Theory and Applications

Reconfigurable chaotic pseudo random number generator based on FPGA

This paper presents an FPGA Pseudo Random Number Generator (PRNG) that is based on the Lorenz and Lü chaotic systems. These two systems are used to generate four different 3D chaotic attractors. One attractor is generated from Lorenz while the other three attractors are generated from Lü. The output attractor of the proposed PRNG can be reconfigured during real time operation using an efficient

Circuit Theory and Applications
Software and Communications

Realization of fractional-order capacitor based on passive symmetric network

In this paper, a new realization of the fractional capacitor (FC) using passive symmetric networks is proposed. A general analysis of the symmetric network that is independent of the internal impedance composition is introduced. Three different internal impedances are utilized in the network to realize the required response of the FC. These three cases are based on either a series RC circuit

Circuit Theory and Applications

Two-Dimensional Rotation of Chaotic Attractors: Demonstrative Examples and FPGA Realization

In this work, we demonstrate the possibility of performing two-dimensional rotation on a chaotic system. This enables the rotation of its attractor in space without changing its chaotic dynamics. In particular, the rotated system preserves the same eigenvalues at all equilibrium points and its largest Lyapunov exponent remains unchanged. Two chaotic systems, one of which is the classical Lorenz

Circuit Theory and Applications