bbabanner.jpg

Filter by

Modeling of carrier mobility for semispherical quantum dot infrared photodetectors (QDIPs)

Carrier mobility for quantum dot infrared photodetectors is considered as one of the critical parameters to determine many important device’s performance parameters such as the electrical conductivity, drift velocity, dark current and photocurrent. In this paper a complete theoretical model of the carrier mobility for semispherical quantum dot structures is developed. This model is based on the

Circuit Theory and Applications

Energy Trading Based on Smart Contract Blockchain Application

Energy and clean energy are big concerns and interests. As the needs differ from area to another, different solutions appear. Energy cost, availability, reliability and trading rules are important keys in energy market. Energy sharing is a hot topic as a consumer being a part of the sustainable distributed system also making benefits such as Prosumer. Blockchain technology provides more secure

Circuit Theory and Applications

J-V characteristics of plasmonic photovoltaics with embedded conical and cylindrical metallic nanoparticles

Plasmonic photovoltaics (PVs) are promising structures that improve thin-film photovoltaics performance, where optical absorption is improved via embedding metallic nanoparticles in the PV's active layer to trap the incident optical wave into the photovoltaic cell. The presented work investigates the design of PV with both structures of conical and cylindrical metallic nanoparticles through

Healthcare
Energy and Water
Circuit Theory and Applications

Implementation of a fractional-order electronically reconfigurable lung impedance emulator of the human respiratory tree

The fractional-order lung impedance model of the human respiratory tree is implemented in this paper, using Operational Transconductance Amplifiers. The employment of such active element offers electronic adjustment of the impedance characteristics in terms of both elements values and orders. As the MOS transistors in OTAs are biased in the weak inversion region, the power dissipation and the dc

Circuit Theory and Applications

Nonlinear charge-voltage relationship in constant phase element

The constant phase element (CPE) or fractional-order capacitor is an electrical device that has an impedance of the form Z(s)=1/Cαsα, where Cα is the CPE parameter and α is a fractional dispersion coefficient of values between 0 and 1. Here we show that in the time-domain the classical linear charge-voltage relationship of ideal capacitors, q=C·v, is not valid for CPEs. In fact the relationship is

Circuit Theory and Applications

Study of Energy Harvesters for Wearable Devices

Energy harvesting was and still an important point of research. Batteries have been utilized for a long time, but they are now not compatible with the downsizing of technology. Also, their need to be recharged and changed periodically is not very desirable, therefore over the years energy harvesting from the environment and the human body have been investigated. Three energy harvesting methods

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Innovation, Entrepreneurship and Competitiveness

Active circuit model of low-frequency behavior in perovskite solar cells

The low-frequency impedance hook in perovskite solar cells (PSC) is a feature that has been frequently associated with the behavior of passive circuits of inductors or negative capacitances. However, if the experimental impedance data do not transform according to the Kramers-Kronig (KK) relations, the system does not fulfill the conditions of linearity, stability, causality and finiteness

Circuit Theory and Applications

Two-Port Network Analysis of Equal Fractional-order Wireless Power Transfer Circuit

Wireless power transfer (WPT) has been widely employed in many applications. Its advantages have added more safety and ease in various medical, industrial, and electrical applications. This paper investigates the two-port network concept in the analysis of the fractional-Order WPT circuit. A general expression for the WPT efficiency as a function of two-port network parameters is derived. It is

Circuit Theory and Applications

High Speed, Approximate Arithmetic Based Convolutional Neural Network Accelerator

Convolutional Neural Networks (CNNs) for Artificial Intelligence (AI) algorithms have been widely used in many applications especially for image recognition. However, the growth in CNN-based image recognition applications raised challenge in executing millions of Multiply and Accumulate (MAC) operations in the state-of-The-Art CNNs. Therefore, GPUs, FPGAs, and ASICs are the feasible solutions for

Circuit Theory and Applications
Software and Communications

FPGA Implementation of Delayed Fractional-Order Financial Chaotic System

This paper proposes digital design and realization on Field-Programmable Gate Array (FPGA) of the Fractional-order (FO) delayed financial chaotic system. The system is solved numerically using the approximated Grünwald-Letnikov (GL) method. For the purpose of FPGA realization, the short memory principle and an approximate GL with limited window size are utilized. Lookup Tables (LUTs) are employed

Circuit Theory and Applications